Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 10821-10831, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38050812

RESUMO

Anisotropic optoelectronics based on low-symmetry two-dimensional (2D) materials hold immense potential for enabling multidimensional visual perception with improved miniaturization and integration capabilities, which has attracted extensive interest in optical communication, high-gain photoswitching circuits, and polarization imaging fields. However, the reported in-plane anisotropic photocurrent and polarized dichroic ratios are limited, hindering the achievement of high-performance anisotropic optoelectronics. In this study, we introduce novel low-symmetry violet phosphorus (VP) with a unique tubular cross-linked structure into this realm, and the corresponding anisotropic optical and optoelectronic properties are investigated both experimentally and theoretically for the first time. Remarkably, our prepared VP-based van der Waals phototransistor exhibits significant optoelectronic anisotropies with a giant in-plane anisotropic photocurrent ratio exceeding 10 and a comparable polarized dichroic ratio of 2.16, which is superior to those of most reported 2D counterparts. Our findings establish VP as an exceptional candidate for anisotropic optoelectronics, paving the way for future multifunctional applications.

2.
Langmuir ; 39(45): 16128-16137, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37916685

RESUMO

The Gram-negative bacteria Marinomonas primoryensis secrete an ice-binding protein (MpIBP), which is a vital bacterial adhesin facilitating the adaptation and survival of the bacteria in the harsh Antarctic environment. The C-terminal region of MpIBP, known as region V (RV), is the first domain to be exported into the Ca2+-rich extracellular environment and acts as a folding nucleus for the entire adhesin. However, the mechanisms underlying the secretion and folding of RV remain poorly understood. Here, we used optical tweezers (OT) to investigate the secretion and folding mechanisms of RV at the single-molecule level. In the absence of Ca2+, apo-RV remains unstructured, while Ca2+-bound RV folds into a mechanically stable structure. The folding of RV could occur via the formation of an intermediate state. Even though this folding intermediate is "hidden" during the folding process of wild type RV in vitro, it likely forms in vivo and plays an important role in facilitating protein secretion. Additionally, our results revealed that the N-terminal part of the RV can significantly stabilize its C-terminal structure. Our study paves the way for further investigations into the structure and functions of MpIBP that help bacteria survive in challenging environments.


Assuntos
Proteínas de Transporte , Gelo , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Bactérias , Análise Espectral , Dobramento de Proteína
3.
Nat Commun ; 14(1): 6739, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875483

RESUMO

Birefringence is at the heart of photonic applications. Layered van der Waals materials inherently support considerable out-of-plane birefringence. However, funnelling light into their small nanoscale area parallel to its out-of-plane optical axis remains challenging. Thus far, the lack of large in-plane birefringence has been a major roadblock hindering their applications. Here, we introduce the presence of broadband, low-loss, giant birefringence in a biaxial van der Waals materials Ta2NiS5, spanning an ultrawide-band from visible to mid-infrared wavelengths of 0.3-16 µm. The in-plane birefringence Δn ≈ 2 and 0.5 in the visible and mid-infrared ranges is one of the highest among van der Waals materials known to date. Meanwhile, the real-space propagating waveguide modes in Ta2NiS5 show strong in-plane anisotropy with a long propagation length (>20 µm) in the mid-infrared range. Our work may promote next-generation broadband and ultracompact integrated photonics based on van der Waals materials.

4.
ACS Nano ; 17(18): 17751-17760, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695313

RESUMO

The nontrivial and rigorous Heaviside phase jump behavior of phase singularities (PSs) empowers exotic topological modes and widely divergent nature compared to neighboring points, which has attracted great attention in condensed matter physics as well as applications in photonics and ultrasensitive sensors. Here we demonstrate the universal existence of a family of topologically protected PSs generated from exciton resonances of single-atom layers. We obtain the PSs by coating the transition metal dichalcogenide (TMDC) monolayers on a nonabsorptive semi-infinite substrate without surface plasmon effect or other assisted resonators, which exploits the benefits of both exciton-dominated enhancement and peculiarities of the singular phase. We show that a refractive indices matched transparent substrate enables TMDC monolayers to exhibit topologically protected zero reflection accompanied by a perfect Heaviside π-phase jump at strong light adsorptions, which can be utilized to radically reduce the thickness of PS-based devices to a single atomic layer. By using the TMDC monolayer-based PSs for refractive index biosensors, we demonstrate its superior phase sensitivity at a level of 104 degrees per refractive index unit and detection of bioactive bacteria, respectively, which is comparable to the cutting-edge surface plasmon and Fabry-Perot resonance sensors. Our proof-of-concept results offer experimental and theoretical insights into a single atomic playground for flat singular optics and label-free biosensing technologies.

5.
ACS Nano ; 16(10): 16271-16280, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36205574

RESUMO

Two-dimensional (2D) material bubbles, as a straightforward method to induce strain, represent a potentially powerful platform for the modulation of different properties of 2D materials and the exploration of their strain-related applications. Here, we prepare ReS2/graphene heterojunction bubbles (ReS2/gr heterobubbles) and investigate their strain and interference synergistically modulated optical and electrical properties. We perform Raman and photoluminescence (PL) spectra to verify the continuously varying strain and the microcavity induced optical interference in ReS2/gr heterobubbles. Kelvin probe force microscopy (KPFM) is carried out to explore the photogenerated carrier transfer behavior in both strained ReS2/gr heterobubbles and ReS2/gr interfaces, as well as the oscillation of surface potential caused by optical interference under illumination conditions. Moreover, the switching of in-plane crystal orientation and the modulation of optical anisotropy of ReS2/gr heterobubbles are observed by azimuth-dependent reflectance difference microscopy (ADRDM), which can be attributed to the action of both strain effect and interference. Our study proves that the optical and electrical properties can be effectively modulated by the synergistical effect of strain and interference in a 2D material bubble.

6.
Adv Mater ; 34(42): e2204621, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36043902

RESUMO

The electromagnetic spectrum between microwave and infrared light is termed the "terahertz (THz) gap," of which there is an urgent lack of feasible and efficient room-temperature (RT) THz detectors. Type-II Weyl semimetals (WSMs) have been predicted to host significant RT topological photoresponses in low-frequency regions, especially in the THz gap, well addressing the shortcomings of THz detectors. However, such devices have not been experimentally realized yet. Herein, a type-II WSM (NbIrTe4 ) is selected to fabricate THz detector, which exhibits a photoresponsivity of 5.7 × 104  V W-1 and a one-year air stability at RT. Such excellent THz-detection performance can be attributed to the topological effect of type-II WSM in which the effective mass of photogenerated electrons can be reduced by the large tilting angle of Weyl nodes to further improve mobility and photoresponsivity. Impressively, this device shows a giant intrinsic anisotropic conductance (σmax /σmin  = 339) and THz response (Iph-max /Iph-min  = 40.9), both of which are record values known. The findings open a new avenue for the realization of uncooled and highly sensitive THz detectors by exploring type-II WSM-based devices.

7.
Adv Mater ; 34(22): e2105665, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34622516

RESUMO

The ability to detect light in photodetectors is central to practical optoelectronic applications, which has been demonstrated in inorganic semiconductor devices. However, so far, the study of polarization-sensitive organic photodetectors, which have unique applications in flexible and wearable electronics, has not received much attention. Herein, the construction of polarization-sensitive photodetectors based on the single crystals of a superior optoelectronic organic semiconductor, 2,6-diphenyl anthracene (DPA), is demonstrated. The systematic characterization of two-dimensionally grown DPA crystals with various techniques definitely show their strong anisotropy in molecular vibration, optical reflectance and optical absorption. In terms of polarization sensitivity, DPA-crystal based photodetectors exhibit a linear dichroic ratio up to ≈1.9. Theoretical calculations confirm that intrinsic linear dichroism, originated from the anisotropic in-plane crystal structure, is responsible for the polarization sensitivity of DPA crystals. This work opens up a new door for exploiting organic semiconductors for developing highly compact polarization photodetectors and providing new functionalities in novel flexible optical and optoelectronic applications.

8.
Adv Mater ; 33(35): e2102541, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302398

RESUMO

Due to their low-symmetry lattice characteristics and intrinsic in-plane anisotropy, 2D pentagonal materials, a new class of 2D materials composed entirely of pentagonal atomic rings, are attracting increasing research attention. However, the existence of these 2D materials has not been proven experimentally until the recent discovery of PdSe2 . Herein, penta-PdPSe, a new 2D pentagonal material with a novel low-symmetry puckered pentagonal structure, is introduced to the 2D family. Interestingly, a peculiar polyanion of [SePPSe]4- is discovered in this material, which is the biggest polyanion in 2D materials yet discovered. Strong intrinsic in-plane anisotropic behavior endows penta-PdPSe with highly anisotropic optical, electronic, and optoelectronic properties. Impressively, few-layer penta-PdPSe-based phototransistor not only achieves excellent electronic performances, a moderate electron mobility of 21.37 cm2 V-1 s-1 and a high on/off ratio of up to 108 , but it also has a high photoresponsivity of ≈5.07 × 103 A W-1 at 635 nm, which is ascribed to the photogating effect. More importantly, penta-PdPSe also exhibits a large anisotropic conductance (σmax /σmax  = 3.85) and responsivity (Rmax /Rmin  = 6.17 at 808 nm), superior to most 2D anisotropic materials. These findings make penta-PdPSe an ideal material for the design of next-generation anisotropic devices.

9.
Small ; 17(21): e2100457, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33890405

RESUMO

Birefringence and dichroism are very important properties in optical anisotropy. Understanding the intrinsic birefringence and dichroism of a material can provide great help to utilize its optical anisotropy. But the direct experimental investigation of birefringence in nanoscale materials is rarely reported. As typical anisotropic transition metals trichalcogenides (TMTCs) materials with quasi-1D structure, TiS3 and ZrS3 have attracted extensive attention due to their special crystal structure and optical anisotropy characteristics. Here, the optical anisotropy properties such as birefringence and dichroism of two kinds of quasi-1D TMTCs, TiS3 and ZrS3 , are theoretically and experimentally studied. In experimental results, the anisotropic refraction and anisotropic reflection of TiS3 and ZrS3 are studied by polarization-resolved optical microscopy and azimuth-dependent reflectance difference microscopy, respectively. In addition, the birefringence and dichroism of ZrS3 nanoribbon in experiment are directly measured by spectrometric ellipsometry measurements, and a reasonable result is obtained. This work provides the basic optical anisotropy information of TiS3 and ZrS3 . It lays a foundation for the further study of the optical anisotropy of these two materials and provides a feasible method for the study of birefringence and dichroism of other nanomaterials in the future.

10.
Opt Express ; 29(3): 3114-3122, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770917

RESUMO

The yield of a large-area ultra-thin display panel depends on the realization of designed thickness of multilayer films of all pixels. Measuring the thicknesses of multilayer films of a single pixel is crucial to the accurate manufacture. However, the thinnest layer is reaching the sub-20nm level, and different layers feature remarkable divergence in thickness with similar optical constants. This turns to a key obstruction to the thickness characterization by optical spectroscopy. Based on the tiny differences in absorptivity, a fast method for measuring the film thickness in a single pixel is proposed which combines the layer number reducing model and micro-area differential reflectance spectroscopy. The lower layers can be considered as semi-infinite in the corresponding spectral range whose thickness is infinite in the fitting algorithm. Hence, the thickness of the upper layer is fitted in a simplified layer structure. For demonstration, a multilayer silicon microstructure in a single pixel, p-Si/a-Si/n-Si (10nm/950nm/50nm) on complex substrate, is measured. The light spot diameter is about 60 microns with measuring-time in 2 seconds. The measurement deviation is 3% compared by a commercial ellipsometer. To conclude, the proposed method realizes the layer number reduction for fitting multilayer thickness with large thickness difference and similar optical constants, which provides a powerful approach for multilayer microstructure characterizations.

11.
Small ; 17(18): e2008078, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33760364

RESUMO

2D ternary materials exhibit great promise in the field of polarization-sensitive photodetectors due to the low-symmetry crystal structure. However, the realization of ternary material growth is still a huge challenge because of the complex reaction process. Here, for the first time, 2D ternary In2 SnS4 flakes are obtained via synergistic additive of salt and molecular sieve-assisted chemical vapor deposition. Raman vibration mode of In2 SnS4 flakes exhibits polarization-dependent properties. The polarization-resolved absorption spectroscopy and azimuth-dependent reflectance difference microscopy further confirm its anisotropy of in-plane optical absorption and reflection. Besides, the In2 SnS4 flake based device on mica shows ultrafast rising and decay rates of ≈20 and 20 µs. Impressively, In2 SnS4 flake based phototransistor demonstrates giant gate-tunable polarization-sensitive photoresponse: the dichroic ratio can be adjusted in the range of 1.13-1.70 with gate voltage varying from -35-35 V. This work provides an effective means for modulating the polarization-sensitive photoresponse, which may significantly promote the research progress of polarization-sensitive photodetectors.

12.
ACS Nano ; 15(1): 1701-1709, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33331154

RESUMO

Low-symmetry two-dimensional (2D) semiconductors have attracted great attention because of their rich in-plane anisotropic optical, electrical, and thermoelectric properties and potential applications in multifunctional nanoelectronic and optoelectronic devices. However, anisotropic 2D semiconductors with high performance are still very limited. Here, we report the systematic study of in-plane anisotropic properties in few-layered b-As that is a narrow-gap semiconductor, based on the experimental and theoretical investigations. According to experimental results, we have come up with a simple method for identifying the orientation of b-As crystals. Meanwhile, we show that the maximum mobility of electrons and holes was measured in the in-plane armchair (AC) direction. The measured maximum electron mobility ratio is about 2.68, and the hole mobility ratio is about 1.79.

13.
Opt Lett ; 45(15): 4136-4139, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735242

RESUMO

Transparent layers are critical for enhancing optical contrast of graphene on a substrate. However, once the substrate is fully covered by large-area graphene, there are no accurate transparent layer and reference for optical contrast calculations. The thickness uncertainty of the transparent layer reduces the analytical accuracy of graphene. Thus, in this Letter, we propose a reference-aided differential reflection (DR) method with a dual-light path. The accurate thickness of the transparent layer is obtained by improving the DR spectrum sensitivity using a designable reference. Hence, the analytical accuracy of graphene thickness is guaranteed. To demonstrate this concept, a centimeter-scale chemical-vapor-deposition-synthesized graphene was measured on a SiO2/Si substrate. The thickness of underlying SiO2 was first identified with the 1 nm resolution by the DR spectrum. Then, the thickness distribution of graphene was directly deduced from a DR map with submonolayer resolution at a preferred wavelength. The results were also confirmed by ellipsometry and atomic force microscopy. As a result, this new method provides an extra degree of freedom for the DR method to accurately measure the thickness of large-area two-dimensional materials.

14.
Small ; 16(7): e1907172, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31967725

RESUMO

Structural symmetry is a simple way to quantify the anisotropic properties of materials toward unique device applications including anisotropic transportation and polarization-sensitive photodetection. The enhancement of anisotropy can be achieved by artificial symmetry-reduction design. A core-shell SbI3 /Sb2 O3 nanowire, a heterostructure bonded by van der Waals forces, is introduced as an example of enhancing the performance of polarization-sensitive photodetectors via symmetry reduction. The structural, vibrational, and optical anisotropies of such core-shell nanostructures are systematically investigated. It is found that the anisotropic absorbance of a core-shell nanowire is obviously higher than that of two single compounds from both theoretical and experimental investigations. Anisotropic photocurrents of the polarization-sensitive photodetectors based on these core-shell SbI3 /Sb2 O3 van der Waals nanowires are measured ranging from ultraviolet (UV) to visible light (360-532 nm). Compared with other van der Waals 1D materials, low anisotropy ratio (Imax /Imin ) is measured based on SbI3 but a device based on this core-shell nanowire possesses a relatively high anisotropy ratio of ≈3.14 under 450 nm polarized light. This work shows that the low-symmetrical core-shell van der Waals heterostructure has large potential to be applied in wide range polarization-sensitive photodetectors.

15.
Nanoscale ; 11(48): 23116-23125, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31789334

RESUMO

Low-symmetry two-dimensional (2D) materials with unique in-plane anisotropy can promote both fundamental science and practical applications in optics, optoelectronics, electronics, and polarization detection. As a member of 2D materials, doping/alloying material systems have gained great attention owing to the tunable bandgap and special properties. However, the in-plane anisotropic optical and electrical properties of these 2D alloy materials have rarely been reported. In this work, low-symmetry 2D Ge(1-x)SnxSe2 (x = 0-1.0) alloy flakes have been synthesized by chemical vapor deposition (CVD) with a bandgap varying from 1.55 eV (GeSe2, x = 0) to 1.90 eV (SnSe2, x = 1.0). Angle-resolved polarized Raman spectroscopy (ARPRS) is used to confirm the in-plane vibrational anisotropy, and azimuth-dependent reflectance difference microscopy (ADRDM) is applied to visualize the in-plane optical anisotropy. Polarization-dependent transmission spectroscopy (PDTS) is carried out to reflect the in-plane absorptional anisotropy and linear dichroism, and birefringence characteristics are also found in the subsequent studies. All of the results indicate the unique in-plane optical anisotropy and birefringence characteristics of the 2D Ge(1-x)SnxSe2 alloy flakes, providing new opportunities for polarization-controlled devices, optical wave plates, and polarizers.

17.
Beilstein J Nanotechnol ; 10: 1745-1753, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31501746

RESUMO

Anisotropic 2D materials exhibit novel optical, electrical and thermoelectric properties that open possibilities for a great variety of angle-dependent devices. Recently, quantitative research on 1T'-WTe2 has been reported, revealing its fascinating physical properties such as non-saturating magnetoresistance, highly anisotropic crystalline structure and anisotropic optical/electrical response. Especially for its anisotropic properties, surging research interest devoted solely to understanding its structural and optical properties has been undertaken. Here we report quantitative, comprehensive work on the highly anisotropic, optical, electrical and optoelectronic properties of few-layer 1T'-WTe2 by azimuth-dependent reflectance difference microscopy, DC conductance measurements, as well as polarization-resolved and wavelength-dependent optoelectrical measurements. The electrical conductance anisotropic ratio is found to ≈103 for a thin 1T'-WTe2 film, while the optoelectronic anisotropic ratio is around 300 for this material. The polarization dependence of the photo-response is ascribed to the unique anisotropic in-plane crystal structure, consistent with the optical absorption anisotropy results. In general, 1T'-WTe2, with its highly anisotropic electrical and photoresponsivity reported here, demonstrates a route to exploit the intrinsic anisotropy of 2D materials and the possibility to open up new ways for applications of 2D materials for light polarization detection.

18.
ACS Nano ; 13(10): 11353-11362, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31525955

RESUMO

van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate the properties and unlock potential applications. Here we present a stable vdW antiferromagnetic material, CrOCl, with low-symmetry orthorhombic structure, and investigate systematically its magnetism, phase transition behavior, and optical anisotropy. Spin-phonon coupling effects are uncovered by the abnormal frequency shifts of Raman-active modes, suggesting the formation of a magnetic superstructure. The sizable abnormal change of interplanar spacing indicates the presence of a structural transition at around 27 K. Further in-plane vibrational, reflectional, and absorptional anisotropic properties are explored both experimentally and theoretically, revealing a highly polarization sensitive characteristic and linear dichroism in 2D CrOCl. Meanwhile, the particularly high polarization dependency of the second-harmonic generation and the nonlinear susceptibility of ∼2.24 × 10-11 m/V make it suitable in the field of polarization-dependent nonlinear optics. The findings on the intricate properties of 2D CrOCl lay foundations for future applications of low-symmetry vdW magnets in spin-dependent electronic and optoelectronic devices.

19.
ACS Nano ; 13(3): 3310-3319, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30840440

RESUMO

Mechanical strain induced changes in the electronic properties of two-dimensional (2D) materials is of great interest for both fundamental studies and practical applications. The anisotropic 2D materials may further exhibit different electronic changes when the strain is applied along different crystalline axes. The resulting anisotropic piezoresistive phenomenon not only reveals distinct lattice-electron interaction along different principle axes in low-dimensional materials but also can accurately sense/recognize multidimensional strain signals for the development of strain sensors, electronic skin, human-machine interfaces, etc. In this work, we systematically studied the piezoresistive effect of an anisotropic 2D material of rhenium disulfide (ReS2), which has large anisotropic ratio. The measurement of ReS2 piezoresistance was experimentally performed on the devices fabricated on a flexible substrate with electrical channels made along the two principle axes, which were identified noninvasively by the reflectance difference microscopy developed in our lab. The result indicated that ReS2 had completely opposite (positive and negative) piezoresistance along two principle axes, which differed from any previously reported anisotropic piezoresistive effect in other 2D materials. We attributed the opposite anisotropic piezoresistive effect of ReS2 to the strain-induced broadening and narrowing of the bandgap along two principle axes, respectively, which was demonstrated by both reflectance difference spectroscopy and theoretical calculations.

20.
Beilstein J Nanotechnol ; 10: 557-564, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873328

RESUMO

Real-time monitoring is essential for understanding and precisely controlling of growth of two-dimensional transition metal dichalcogenide (2D TMDC) materials. However, it is very challenging to carry out such studies during chemical vapor deposition (CVD). Here, we report the first, real time, in situ study of the CVD growth of 2D TMDCs. More specifically, the CVD growth of a molybdenum disulfide (MoS2) monolayer on sapphire substrates has been monitored in situ using differential transmittance spectroscopy (DTS). The growth of the MoS2 monolayer can be precisely followed by observation of the evolution of the characteristic optical features. Consequently, a strong correlation between the growth rate of the MoS2 monolayer and the temperature distribution in the CVD reactor has been revealed. Our results demonstrate the great potential of real time, in situ optical spectroscopy to assist the precisely controlled growth of 2D semiconductor materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...